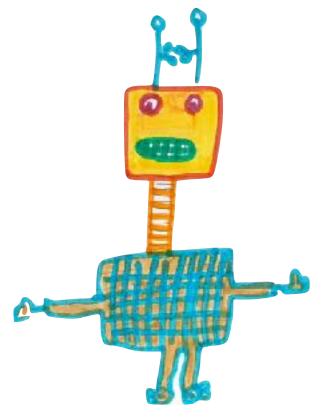
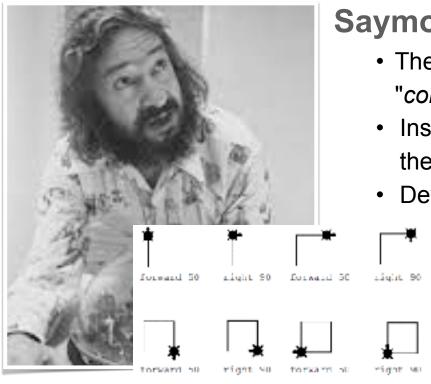


EPFL Agenda

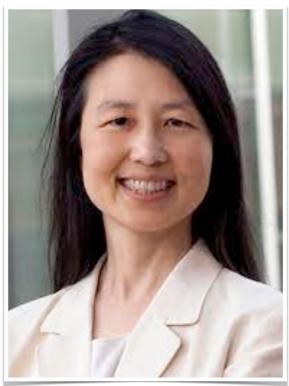

- 8:15 Computational Thinking : what and why
 - Définition
 - Integration
- 9:00 Pause
- 9:15 Teaching computational Thinking
 - Approach
 - Orchestration

EPFL Our path

- Primary school teacher
- Teacher trainers
- Edunum project coordination


- MSc in Computer Science
- Ph.D student at EPFL ETH Joint Doctoral Program in Learning Sciences

Define CT


Computational Thinking?

Saymour Papert - A statement

- The first to use the expression
 "computational thinking» in Mindstorm
- Inspired by Piaget's Constructivism theories, developed Constructionism
- Developed Logo

EPFL Computational Thinking?

Jeannette Wing - A definition

• "The thought processes involved in formulating problems and their solutions, so that the solutions are represented in a form that can be effectively implemented by an information processing agent".

Computational Thinking

age conflowers the middle of the addition in additioner. Alles and compresses the became their became? More along, reconferencies, or simulation. undercentally it addresses the counter. What is amparable! Takes, we have only pass of the

Computational children, is a fundamental shift for - incide of classical analysis, it is more many overyone, not have for compresent televales. To endng, writing, and arichmetic, we should add except a

held buding the difficulty of a problem account. paring divise that will san the educion. We must comicar the mathinshipsensoion valid suspens counties, and its special commissioners

be editing a position officiants, we might halfsatisfied a workingly differ it publishs has some

Comparational distring is chinking recurring to is provided provening. In its investmentage under as done and date at early. It is open deading in the general ing resource or remorbing more than one many. It

EPFL Computational Thinking?

M. Resnick - An observation

Presentation of a concrete framework including

- concepts (e.g. loop, variable),
- practices (e.g. debugging, iteration)
- perspectives (e.g. expression, questioning).

Computational Thinking?

Micheal Lodi - An Implementation

General classification of elements:

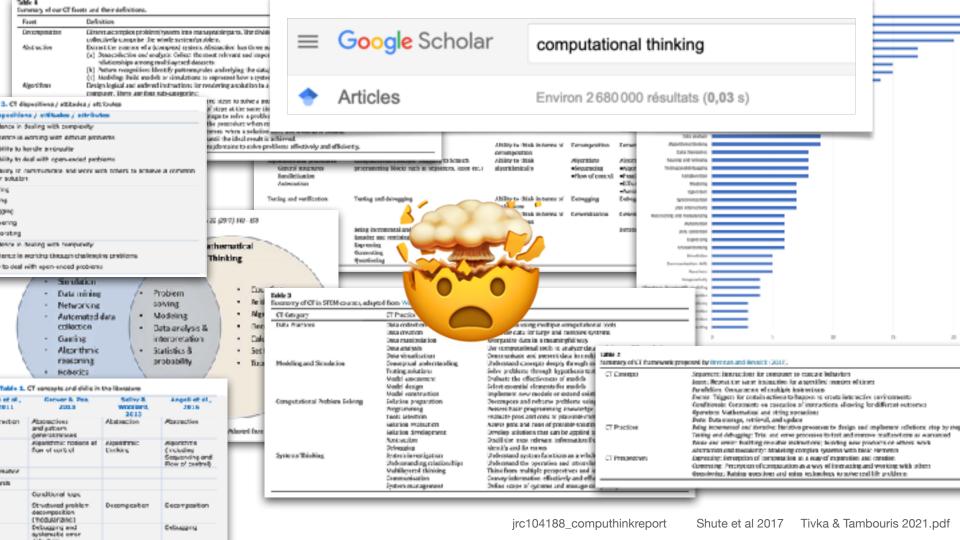
- Mental processes (mental strategies useful for solving problems)
- Methods (operational approaches widely used by computer scientists)
- Practices (typically used in the implementation of solutions based on computing machines)
- Cross-cutting skills (general ways of seeing and operating in the world)

CT's components

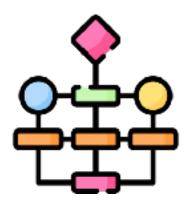
Be persistent

Representation

Representation


O i 3 components									
Méthode	Pratique	Processus mentaux	Compétences transversales	Concept	Approche	Perspectives	Pratique	Concept	
Automation	Experimenting	Algorithmic thinking	Design and Create	Logic	Tinkering	Expressing	Being incremental	Sequences	
Data Collection	Iterating	Logical thinking	Communicate and collaborate	Algorithm	Creativity	Connecting	Testing and debugging	Loops	
Analysis and Representation	Tinkering	Problem analysis	Reflect	Decomposition	Debugg	Questioning	Reusing and remixing	Events	
Parallelization	Test and Debug	Problem decomposition	Learn	Patterns	Perseverance		Abstracting	Parallelism	
Modeling and Simulation	Reuse and Remix	Abstraction	Meta-reflect	Evaluation	Collaboration		Modularizating	Conditionals	
Analysis and Evaluation		Pattern	Computational world	Abstraction			Tester	Operators	
Programming		Generalization	Be tolerant for ambiguity				Affinage itératif	Data	

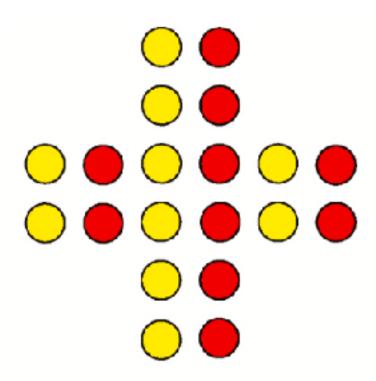
Barefoot

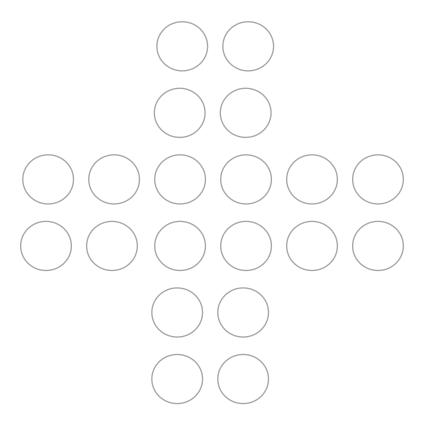

Automatisation

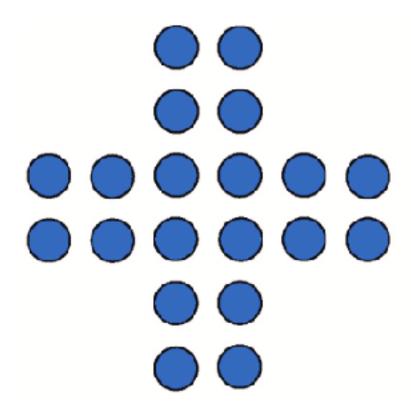
Generalisation

Resnick + Brennan

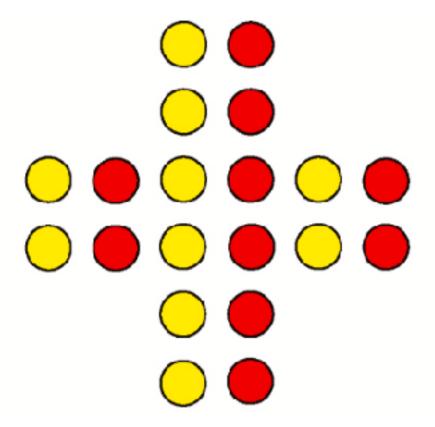
Defining a computational problem



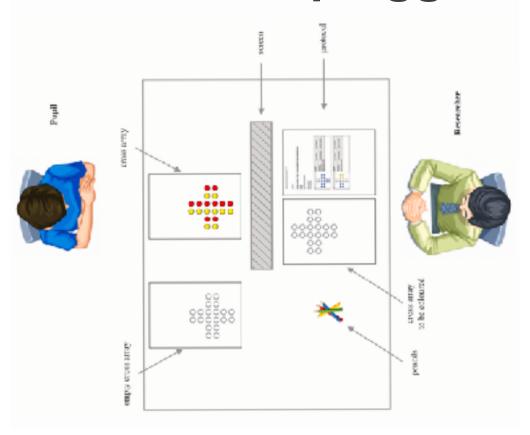

Agent


Identify CT

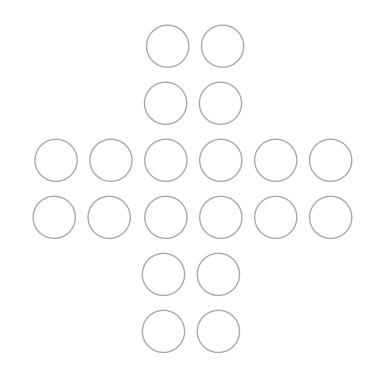
EPFL CT in Practice - Unplugged



CT in Practice - Unplugged



EPFL CT in Practice - Unplugged



EPFL CT in Practice - Unplugged

Experimental setting of the CAT

EPFL CT in Practice - Unplugged (by team)

CT's components

Be persistent

Representation

Representation

O i 3 components									
Méthode	Pratique	Processus mentaux	Compétences transversales	Concept	Approche	Perspectives	Pratique	Concept	
Automation	Experimenting	Algorithmic thinking	Design and Create	Logic	Tinkering	Expressing	Being incremental	Sequences	
Data Collection	Iterating	Logical thinking	Communicate and collaborate	Algorithm	Creativity	Connecting	Testing and debugging	Loops	
Analysis and Representation	Tinkering	Problem analysis	Reflect	Decomposition	Debugg	Questioning	Reusing and remixing	Events	
Parallelization	Test and Debug	Problem decomposition	Learn	Patterns	Perseverance		Abstracting	Parallelism	
Modeling and Simulation	Reuse and Remix	Abstraction	Meta-reflect	Evaluation	Collaboration		Modularizating	Conditionals	
Analysis and Evaluation		Pattern	Computational world	Abstraction			Tester	Operators	
Programming		Generalization	Be tolerant for ambiguity				Affinage itératif	Data	

Barefoot

Automatisation

Generalisation

Resnick + Brennan

EPFL CT in Practice - Unplugged

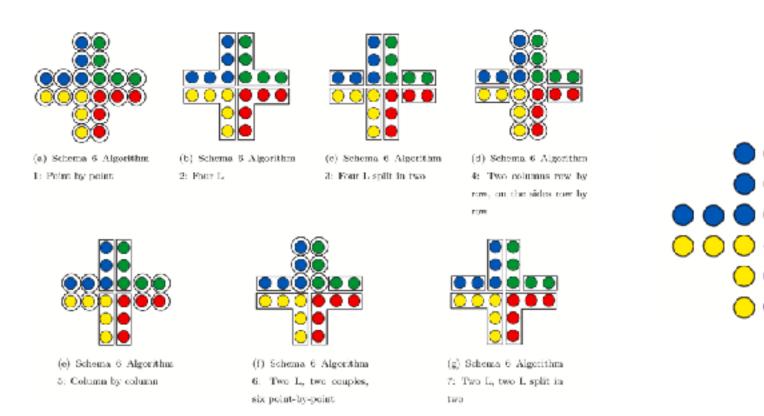


Fig. A.22. Algorithms that have been observed at least once for schema S6.

In The CT-cube: A framework for the design and the assessment of computational thinking activities

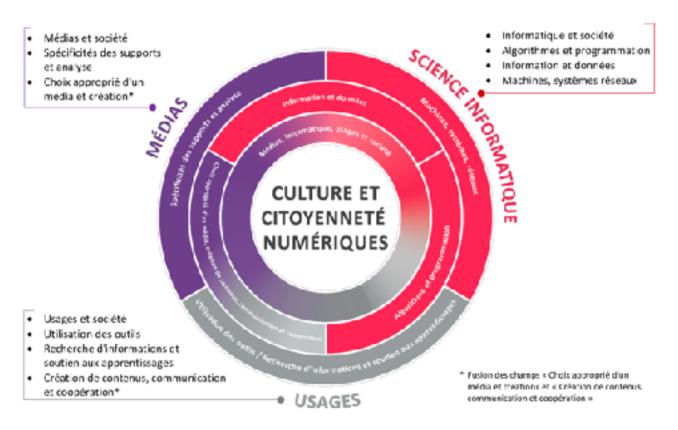
CT's components

Be persistent

Representation

Representation

O i 3 components									
Méthode	Pratique	Processus mentaux	Compétences transversales	Concept	Approche	Perspectives	Pratique	Concept	
Automation	Experimenting	Algorithmic thinking	Design and Create	Logic	Tinkering	Expressing	Being incremental	Sequences	
Data Collection	Iterating	Logical thinking	Communicate and collaborate	Algorithm	Creativity	Connecting	Testing and debugging	Loops	
Analysis and Representation	Tinkering	Problem analysis	Reflect	Decomposition	Debugg	Questioning	Reusing and remixing	Events	
Parallelization	Test and Debug	Problem decomposition	Learn	Patterns	Perseverance		Abstracting	Parallelism	
Modeling and Simulation	Reuse and Remix	Abstraction	Meta-reflect	Evaluation	Collaboration		Modularizating	Conditionals	
Analysis and Evaluation		Pattern	Computational world	Abstraction			Tester	Operators	
Programming		Generalization	Be tolerant for ambiguity				Affinage itératif	Data	


Barefoot

Automatisation

Generalisation

Resnick + Brennan

L'éducation numérique : programme scolaire Suisse romande

Curriculum

Éducation numérique

M/OUR

Alex que los mobilisativacionems somostarent pour Troceles en la pressa scrita, la bilitation, la malio, la philosomohiale indesse de recover d'affichage, l'authentient l'indessed et les comocilismes à haute distrita en intervalité la partage d'information, s'outerment autoriers de monernis coloret su tes que les reseaux, sicciaux. Use commens coloret su desgonent les publics vises, bust emperiment plus intervalsions nouvelles. In perfoculier, de societais outils intégrant de montispes finchionnelles de contenue, partagles deschiment avec, ser commenses et visibles vise.

L'ass flatris supossegue l'élèse arquiert me romosthensim comparte des médias traditionnels et des nouveaux médias. El se familiaries arec, a place de chiegosembles aux dicientes individuelle, sociétals, économique, polítique et culturelle.

Utilive appethende auss l'ensemble des médias comme exient de servoire d'informations, les preside des sonnois facories sa supposté à l'informar de manife citaine, en desinguent informations visitões, informations-officielles, facesa informations, unesse et mannoiges (file la prépara aussi à inferentire, appumette et à débutire.

Crédive utitate de cultis injuneroques de répasion et de remineración de manières autorima, minion, matéria, soburiste et responsable en fonction des enjusz et des attactiones l'appreciationes. El produit et del hange des messages trabules, audios et valdos en difinant le manière opportante en atmontes consus a disposición. La direct d'autori en acestral las entretición de la sensonnalió. As direct d'autori et los domines.

A sitter bouvoiregour s'oriente dans une sociéte en mutation et putil au vervice de l'impression includiuplie et de liers sociaux, l'ave Midue constitue unipilie de 'éducation à la sitiogramate trumérique.

SCIENCE INFORMATIQUE

La Science informatique etudie le trotement autoriatre de l'information

Cet se serbige àll'Éducation numérique en tant que mybère d'un apprentissage desclaimant. Au travers calcirides délitamenter puis brasentes. Elles est amme à artis e a scalenté à discouver les principeux concepts qui sous-tendent to tratonient le transmission oths stochage automations de l'information.

- Agenthmes et programmation: de la recette de cuisine, pur soumale, entant pue ruite l'apérations ou d'indrustions paqu'aux langues de programmation.
- Momation et données des mores souels d'écriture et d'utilisation de symboles, par exemple, jurqu'eu cologe internatique de données.
- Nachnes systems, resears: De lideratication des pincipalespartes d'un retinales y par teample, cony'à le decouverte de l'architecture d'internet.

Anns, la accernce informatique sintéressa auxicompétences permettant. Forganiser, c'exposter et de présenter des données dans le suit de facilités la récoltion de problèmes desentérationsatique su computationnées. Détien et au

mesure le discriredes processus, pus deles firmatier fans un ungage intomarque. I represent evou moonne des phénomenes stativos, sechiques, sociaix sudes situations mathémitiques es mobilisant des statiques amplimathémitiques es mobilisant des statiques ampli-

Gers le ulump informatique et aquitet, une pitentium particuline est accorde à la protection des domites aux risques lés aux traceshurbenques et aux limites podes au braitment automitait le révonite.

USAGET

En function des titches grapatiles, l'éties oquant les saules et l'abblinde de lorse ne les médites, les legalistes l'en etienne numériques pour les utiliser de façan efficiente. Ces compétences la citières y annéhierne de cardens, subdiment les seppendiresque et sont abbuestée clans le radio de productions municipales et sont abbuestée clans le radio de productions municipales et sont abbuestée clans le radio de denainne disciplisaires affects becovéer de néchleur et de dévendager les susgent des solfs municipales.

Usages of société propose un champ de éfficient autour des préfugios subspireres sées outiles remédiques, soules partieutes (spécialement, ...) et commos a l'Education et van du meroppement durante (ETES), industrient laur la commentation de société d'impéritiques industs par laurs usages (stockages, nota-haugement, ...). Michaelmeir (dinner qui sart de délination qui de decurition pour sere antre ilumnée à lequelre ette est relacacinée. Dans le disclaire écunitations, une entificationale attendatue on maint qui répoduit dans un focile permetant à une macrine et angier crames removements per support à cr licrete. Exemples : siste de-néation à'unifichez plocis-sisteaties dums photo, biglioi quant seré à plot en ficilee.

Modelatury internance dont to die not d'animer e de common sepunciación à information sur en reseau acciar, un revue, un six internat, ... in modelatura aventatios etilisatirum, récult feur l'angaze y'il est incorrect, effect les messages cui m'ant par les places, soliques cui di contremience di tire. Vs., soil pares qu'ils enfraignent les régles assicioles os innocloses.

Mode virtuel: mode criti artificialment par un leajoid pouvant hiberger sine communeué dutifications ayant la capacité de s'y Morece et l'y Hibergis.

Objit concetti-stipl informations trianst perforitur information et dots della capacità la tragemettre ses dominés vets ut autre dige du l'est recovai. Exemples modificionencies, feari-perferentimi, replace commende sittere descripce automatique en via la un capteur dissocialment.

Paradex: ligirist ettu un materialiparmetteri de binexes, perter la politique de sacusté-du rélano.

Person informatique rou computationnella): proventie ons notomiset ons internous utriales et intermedique tableomposition necommissionno de accinimas, platraction et algorithmici your représentes et disordine des problèmes.

et algorithmic) your représenter et doordre des précièmes.

Planforme collaborative : expose de travail virtuell qui dentravaile traus es outre telle à la bouchusé dun retige, la gestion descommissances et un franctionnement d'une regions d'une

Procesus: suite d'apérations acculosant à un doutat.

et les met à dissosition des acteurs.

Programme: traduction d'un algorithme dans un langage de programmation afin de le faire adecuter par une machine.

Propose di communication: innomino de regins ervent à fains communiquer lins manhims, entre effici et qui righicent l'ordre fains lequel chaque participant peut intervenir, la structure des commercemoples, la manifer d'accernine comortiment de dennies et destination....

PAGNA sugmentia suproposition de landarité di difformante. Sease, images 20, 20, violes, "D valoutés danum ayateme informatique de temps relet. Els chaiges souvent les difformantes memoranes qui permiseire di incrusion de layon mémori des origins violes de consum adouvence d'images.

Béausidellemétique i réseau de filiar norma sir altres numés riques sui relle des systèmes, par exemple des ardinateurs, ons dements, ons integrates, ons rotaves connections, un communications extres rais nasuda sons rélatedes seccides câties su santa II.

Résausocial: platiforme digitale permettant à les memores de uniter et de publier des suntenuent d'étautin nu sântégrer des résous d'arrès.

Rubal: nucrime interuginum sincicument succumensionnement à l'adde de septeur (proximité, presion, mora, ...) et et s'autiement (miseum, lemines, hani peripus) et en un programma informatique qui Alfantaux nunquelement

Saumpade: calcalon sui conclete à dualique et a mettre en sicuritéries données contenues dans un système informanque. Anns une sourreparrie compléte chaque fais qu'un prolème

Over Lauregarde, traux les flichiers et docuers für systéme auni copies. Ainte systéme de sauvegande stockeums copies compilités suspitémentains delle seunce de données los de chaques sauvegandecongrammés.

Une savegande minorestrune copie exade des données sources. Arec un minor, il nip a qu'une asult ascregande que contient les Sichens de uderesurdems tels qu'ils, existalentitions de rote demitre sauvegands.

Science informatique: informatiqueen bnt-que matine-t'un appenditusque des joinniers qui porte sonite resciencerd inclirique du tratament de l'information- et parenet la résolution de problèmes àll'aire delignithmes indominant.

Service: fonctionnable su pertiede toncionnable mise àdispostoro par un oppose pour assurer uns stone particulante. Simulation: execution of un programme informatique simutant un shiptomisma shiptiona skiel.

Sous-programme: suis-ancomble of un programma. L'utilisation de cousprogrammes déblés à des tiches spéciriques pormot de rehable et code plus modulaire.

Appel delibers i la combinamiente in specializare qui est Mamoin ha l'artina e l'antesa spisiagit, la repoliformissammente unte epiton distinsacività aucci lecontiene. La specifaction est antiferenzati mitigate è la situation au point d'en devent acteur et estimate.

Egatime binalin: systems as numbration utilisant is base 2. Ce-yotime:permetauxondinatrurode tonctionner.

Système embarqué: système electronique et informatique autimome sobsistes dans une fuche. Letterme disagne aussi bian le materialinformatique que le legislel utilisé. En releaf autimome est un sailibre embarqué.

Tour numbigue i ensemble d'information avragables par un dispositi mandrage sont l'activité out-libertité de seri utilteurem-. Crite inver geui tier urbite versuitement par par la laboration de l'activité de l'acque positife sur un dessu soid, arbite entiges. . L'ou être fatilise dison intellementation de l'acque de l'acque positife sur une temporament des neuves de consumeration door sissue. Il Repropose, trabba et comboles donné l'impotantes laises di données, les fations pouvent évoler des informations significations, fortaligques su entre de informations significations, fortaligques su entre information significations, fortaligques su entre information significations, fortaligques su entre activité de la laboration de l'acque automation signification de l'acque par l'acque de l'acque acque de l'acque acque de l'acque acque acq

π PER

ÉDICADON MUNICIPAL DE ANDIETROS AND ÉTICADON MUNICIPAL DE ANDIETROS ANDIETRO

@-CIP 2001

MÉDIAS

Les médias désignent tout support ou canal permettant de transmettre et d'échanger des informations. Les médias sont étudiés quel que soit le format (texte, image fixe ou en mouvement, son, ...) et le support de diffusion (radio, presse, affiche, télévision, <u>internet</u>, ...). Si <u>internet</u> a considérablement modifié les pratiques médiatiques, les médias traditionnels y ont trouvé leur place, exploitant les possibilités nouvelles liées au numérique.

Alors que les <u>médias</u> traditionnels consistaient pour l'essentiel en la presse écrite, la télévision, la radio, la photographie, le cinéma ou encore l'affichage, l'avènement d'internet et les connexions à hauts débits ont intensifié le partage d'informations, notamment au travers de nouveaux médias, tels que les <u>réseaux sociaux</u>. Ces derniers ciblent ou élargissent les publics visés, tout en générant des interactions nouvelles. En particulier, de nouveaux outils intégrant de multiples fonctionnalités permettent la création et la publication individuelles de contenus, partagés directement avec une communauté d'utilisateurs.

L'axe *Médias* suppose que l'élève acquiert une compréhension comparée des médias traditionnels et des nouveaux médias. Il se familiarise avec la place de chaque média aux échelles individuelle, sociétale, économique, politique et culturelle.

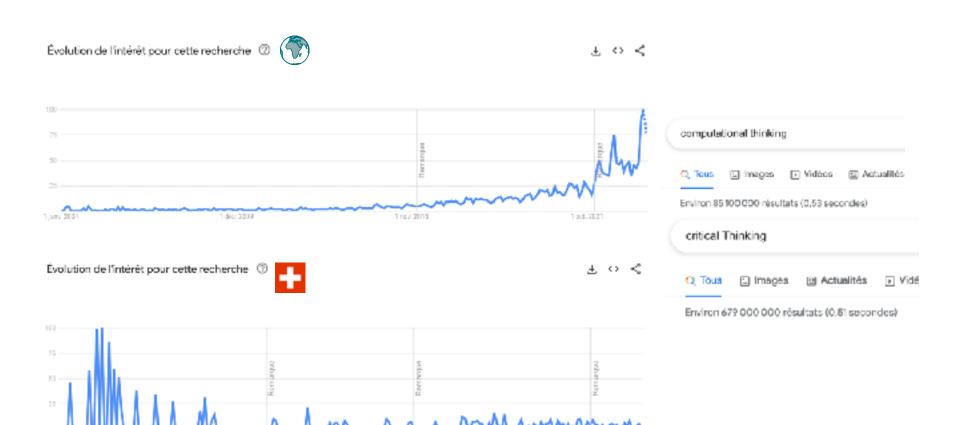
L'élève appréhende aussi l'ensemble des médias comme autant de sources d'informations. La pluralité des sources favorise sa capacité à s'informer de manière éclairée, en distinguant informations vérifiées, informations officielles, fausses informations, rumeurs et mensonges. Elle le prépare aussi à interpréter, argumenter et à débattre.

L'élève utilise les outils numériques de création et de communication de manière autonome, critique, créative

SCIENCE INFORMATIQUE

La *Science Informatique* étudie le traitement automatisé de l'information.

Cet axe participe à l'Éducation numérique en tant que matière d'un apprentissage disciplinaire. Au travers d'activités débranchées puis branchées, l'élève est amené au fil de sa scolarité à découvrir les principaux concepts qui sous-tendent le traitement, la transmission et le stockage automatisés de l'information.


- Algorithmes et programmation: de la recette de cuisine, par exemple, en tant que suite d'opérations ou d'instructions jusqu'aux langages de programmation.
- Information et données: des modes usuels d'écriture et d'utilisation de symboles, par exemple, jusqu'au codage informatique de données.
- <u>Machines</u>, systèmes, réseaux: de l'identification des principales parties d'un ordinateur, par exemple, jusqu'à la découverte de l'architecture d'internet.

Ainsi, la Science Informatique s'intéresse aux compétences permettant d'organiser, d'exploiter et de présenter des données dans le but de faciliter la résolution de problèmes (pensée informatique ou computationnelle). L'élève est en mesure de décrire des <u>processus</u>, puis de les formaliser dans un langage informatique. Il représente el/ou modélise des phénomènes naturels, techniques, sociaux ou des situations.

mathématiques en mobilisant des stratégies simples.

Dans le champ *Informatique et société*, une attention particulière est accordée à la protection des données, aux risques liés aux traces numériques et aux limites posées au traitement automatisé de données.

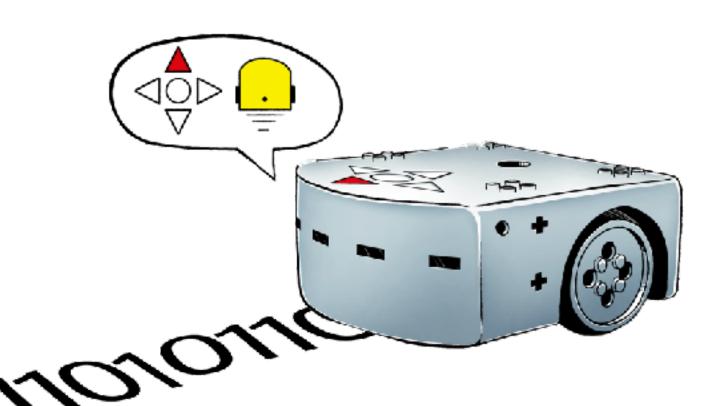
EPFL Trend of CT

EPFL Why CT?

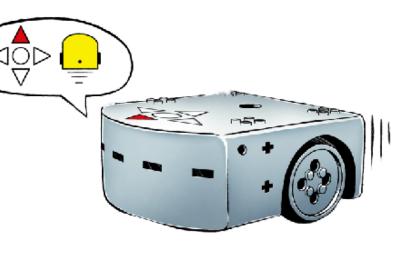
Teaching computational thinking, is to teach them how to think like an economist, a physicist, an artist, and to understand how to use computation to solve their problems, to create, and to discover new questions that can fruitfully be explored.

EPFL Installer Thymio: https://dgxy.link/CS411

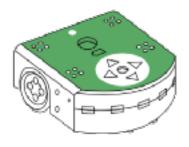
Thymio Suite 2.4.0



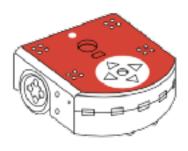
Programmez et gérez vos robots avec 6 langages de programmation, disponible dans différents systèmes d'exploitation


TELECHARGER THYMIO SUITE

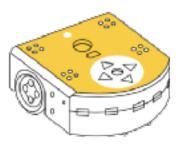
DISCOVER THYMIO THE ROBOT


DISCOVER THYMIO THE ROBOT

- A robot for educational purposes
- Designed in Switzerland
- Learn programming as well as how to approach
 - the scientific process
- Morphologically neutral, non-gendered
- Better understanding of technological objects surrounding us
- Always a great interest from students...and teachers!!


PRE-PROGRAMMED BEHAVIORS

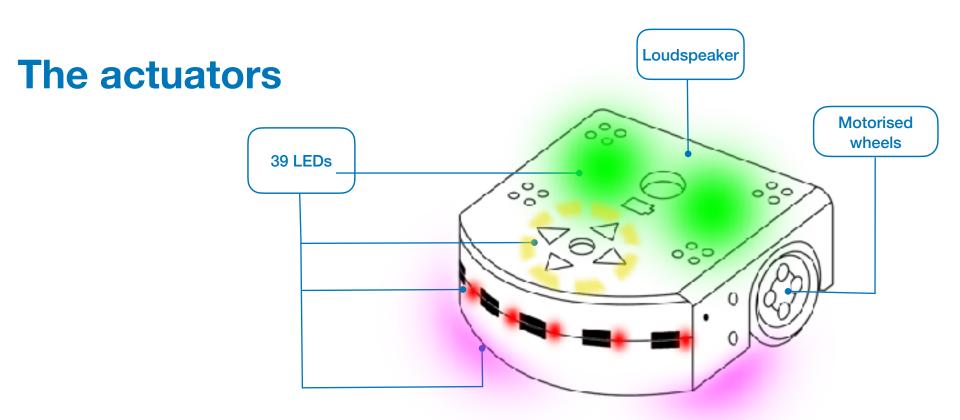
Thymio green


The follower

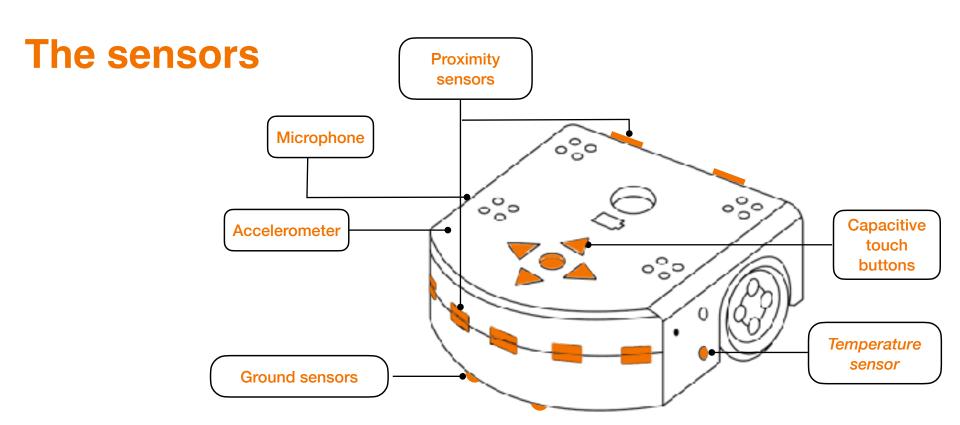
Thymio red

The fearful

Thymio yellow

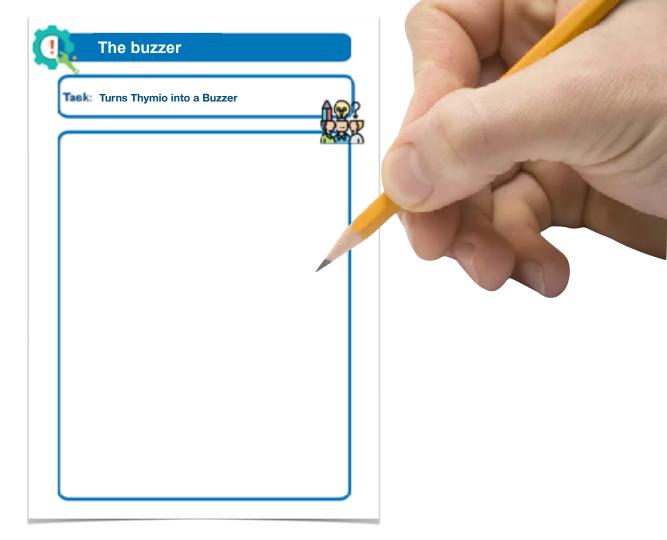

The curious

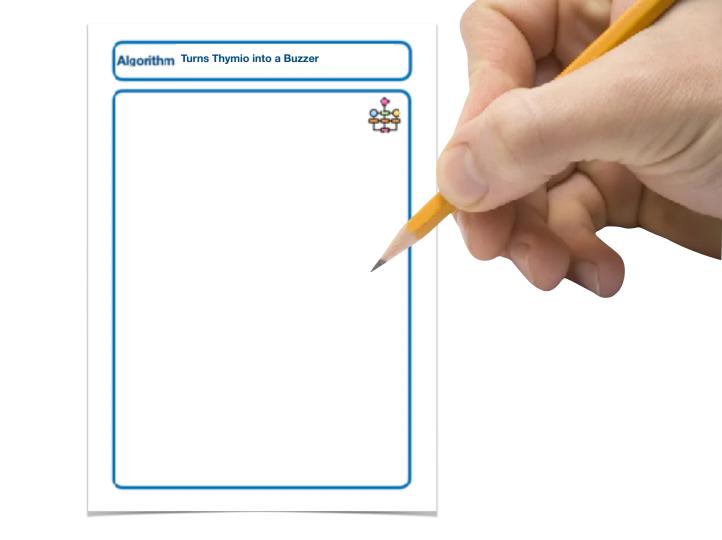
Thymio magenta



The obedient

THE COMPONENTS


THE COMPONENTS



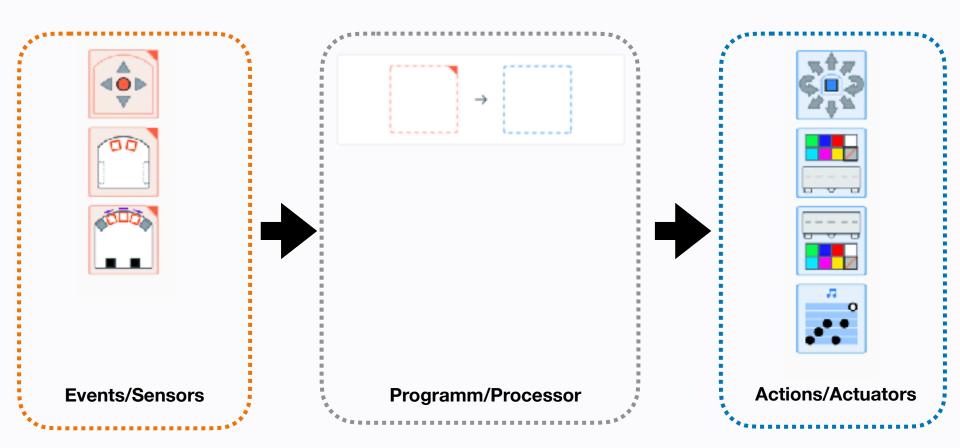
THE BUZZER...

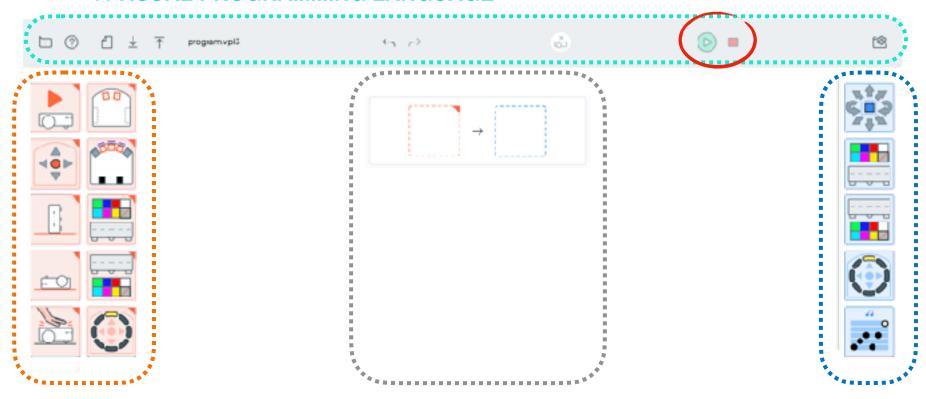
gorithm

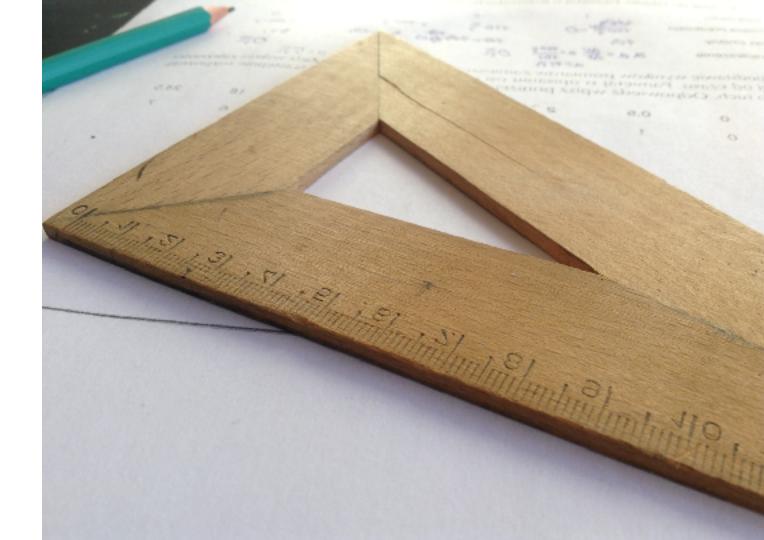
Backside -no-> do Seusor dekets ? right RH JI K mie den of eo 13 die budward

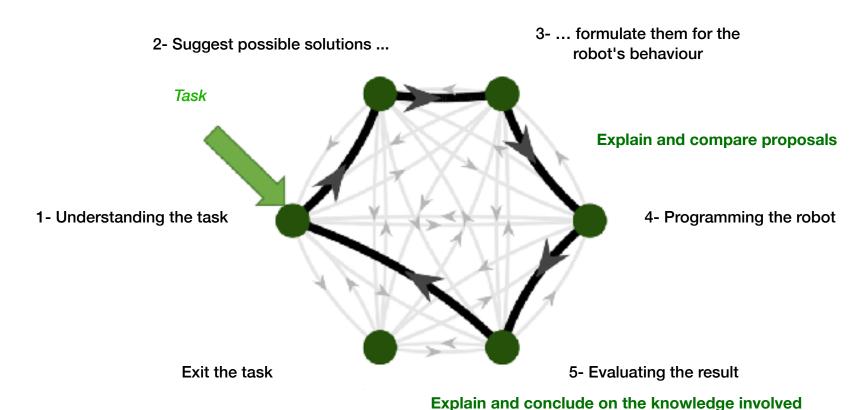
Algorithm

Algorithm

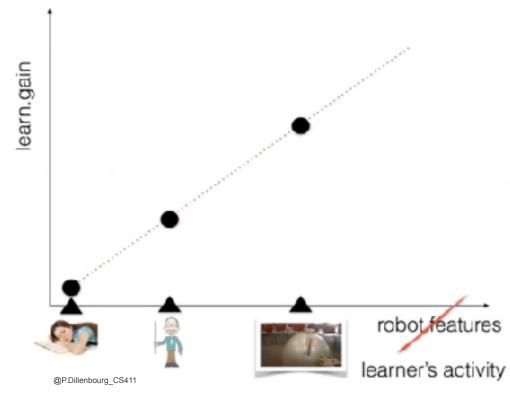

O: no distance braseners. When he - near white . 4 62 = 0 EE 60 c 8 Hight motor back (50) Ma=Me=1 else elif bico right motor upera (0) m, = 2 N. = 0 elil hice M, 00 left motor back (501 me2 els MITTLE lest mistio. Ipud (0)


VPL3: INTRODUCTION

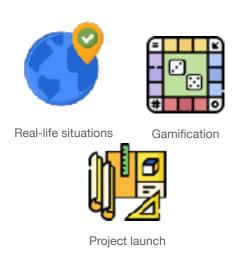

A VISUAL PROGRAMMING LANGUAGE


VPL3: INTRODUCTION

A VISUAL PROGRAMMING LANGUAGE



The six phases of the Creative Computationnal Problem Solving Model (Chevalier & Giang et al., 2020).


- Unplugged /plugged
- Representations (explain, draw, write)
- Explicitation to the pair, to the teacher, to the group
- Compare propositions and approachs

learn.gains = f(learn.activity)

Encouraging interaction

Increase student motivation

Teacher guidance and feedback

Guidance:

- Formulating the problem
- Keep your hands behind your back
- Question the pupils
- Break down the task
- Synchronous demonstration
- Provide external resources
- Tutoring between students

une tape. Attention! Tu dois trouver une solution pour le faire revenir dans son état initial.

EPFL Bibliography

- The CT-cube: A framework for the design and the assessment of computational thinking activities, 2022, Alberto Piatti, Giorgia Adorni, Laila El-Hamamsy, Lucio Negrini, Dorit Assaf, Luca Gambardella, Francesco Mondada (https://www.sciencedirect.com/science/article/pii/S2451958821001147)
- The role of feedback and guidance as intervention methods to foster computational thinking in educational robotics learning activities for primary school, January 2022. Morgane Chevalier, Christian Giang, Laila El-Hamamsy, <u>10.1016/j.compedu.2022.104431</u>
- New frameworks for studying and assessing the development of computational thinking, 2012, K. Brennan, M. Resnick https://www.sciencedirect.com/science/article/pii/S0360131522000021?via=ihub#bbib11
- Informatical Thinking, Michael LODI, Department of Computer Science and Engineering, 2020 https://ioinformatics.org/journal/v14 2020 113 132.pdf
- Hemmendinger, David. "A plea for modesty." Acm Inroads 1.2 (2010): 4-7. https://dl.acm.org/doi/abs/10.1145/1805724.1805725